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Discovery

Paul Bamborough,* David Drewry,” Gavin Harper,” Gary K. Smith,* and Klaus Schneider®

Molecular Discovery Research, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire, SGI 2NY, U.K., Five Moor Drive, Research
Triangle Park, North Carolina 27709, U.S.A., and New Frontiers Science Park, Harlow, Essex CM19 5AW, U.K.

Received September 4, 2008

More than 500 compounds chosen to represent kinase inhibitor space have been screened against a panel of
over 200 protein kinases. Significant results include the identification of hits against new kinases including
PIM1 and MPSK1, and the expansion of the inhibition profiles of several literature compounds. A detailed
analysis of the data through the use of affinity fingerprints has produced findings with implications for
biological target selection, the choice of tool compounds for target validation, and lead discovery and
optimization. In a detailed examination of the tyrosine kinases, interesting relationships have been found
between targets and compounds. Taken together, these results show how broad cross-profiling can provide

important insights to assist kinase drug discovery.

Introduction

The search for inhibitors of protein kinases is an area of
intense activity. A keyword search for “kinase inhibitors”
returned 1281 patents filed in 2007 alone. The approval of
imatinib mesylate (4-[(4-methyl-1-piperazinyl)methyl]-N-[4-
methyl-3-[[4-(3-pyridinyl)-2-pyrimidinylJamino]phenyl]benza-
mide methanesulfonate)' for the treatment of chronic myeloid
leukemia (CML) in 2001 has been followed by several more
for oncology indications and increased activity for other
therapeutic areas.> One lesson from the success of imatinib
mesylate, which inhibits KIT“ and other kinases in addition to
its primary target c-Abl (Abelson murine leukemia viral
oncogene homologue 1), is that a kinase inhibitor does not
require absolute selectivity for a single target for an acceptable
safety profile. Indeed, off-target effects may have beneficial
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“ Abbreviations: AAK1, AP2-associated kinase 1; ABL, Abelson murine
leukemia viral oncogene homologue 1; AKT, v-akt murine thymoma viral
oncogene homologue; ARG, Abelson murine leukemia viral oncogene
homologue 1; ASK1, Apoptosis signal-regulating kinase 1; ATP, adenosine
triphosphate; BTK, Bruton’s tyrosine kinase; CAMK, calcium/calmodulin-
dependent protein kinase; CDK, cyclin-dependent kinase; CHK 1, checkpoint
kinase 1; CKI1, casein kinase 1; CLK, CDC-like kinase 1; CMGC, CDK
MAPK GSK3 and CLK family; CSK, C-src tyrosine kinase; EPH, ephrin
receptor; ERB, erythroblastic leukemia viral oncogene homologue; ERK,
extracellular signal-regulated kinase; FER, Fps/fes related tyrosine kinase;
FES, feline sarcoma oncogene kinase; FLT, Fms-like tyrosine kinase; FMS,
colony stimulating factor 1 receptor; FRK, Fyn-related kinase; GAK, cyclin
G-associated kinase; GSK3, glycogen synthase kinase; IKK, IkB kinase;
IR, insulin receptor kinase; JAK, Janus tyrosine kinase; JNK, c-Jun
N-terminal kinase; KHS1, kinase homologous to SPS1/STE20; KIT,
Hardy—Zuckerman 4 feline sarcoma viral oncogene homologue; LCK,
lymphocyte cell-specific protein—tyrosine kinase; LKB1, serine/threonine
kinase 11; LOK, lymphocyte-oriented kinase; MAPK, mitogen-activated
protein kinase; MELK, maternal embryonic leucine zipper kinase; MPSK1,
myristoylated and palmitoylated serine/threonine-protein kinase; PAK, p21/
Cdc42/Racl-activated kinase; PDGFR, platelet-derived growth factor recep-
tor; PIMI1, proviral integration site in Moloney murine leukemia virus;
RIPK2, receptor-interacting ser/thr kinase 2; SAR, structure—activity
relationships; SLK1, STE20-like kinase; STE, yeast sterile kinase branch;
SYK, spleen tyrosine kinase; TGFpRI, transforming growth-factor j
receptor; TK, tyrosine kinase family; TNKI, tyrosine kinase nonreceptor
1; ZAP70, ¢-chain (TCR) associated protein kinase 70 kDa.
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effects for CML and other indications.* However, understanding
the inhibition profile of a compound is highly desirable if not
essential.

The human genome contains an estimated 518 protein
kinases.>® Because of the conservation of the ATP-binding site,
compounds bind to multiple kinases with greater frequency than
for any other large biological system with the possible exception
of aminergic G-protein-coupled receptors.” Even compounds that
are initially reported to be selective rarely turn out to be
completely selective when screened against a large enough
panel. Several recent publications have reported additional
kinase activities of clinical compounds and biological tools to
those that were originally known.®*'" As inhibition of some
kinases becomes more firmly linked to adverse effects, it will
become increasingly important to avoid inhibiting these.

Here, results are reported from screening a set of 577 diverse
compounds across a panel of 203 protein kinases. The com-
pounds were intended to represent kinase inhibitor chemical
space as known to the authors at the time this experiment was
carried out. This differs from other recent kinase profiling
studies, which made use of clinical compounds and structures
taken from the literature. Examples are given of some of the
many ways in which the data generated might be useful.

For instance, we describe the discovery that a known CHK1
inhibitor is also a potent PIM1 inhibitor. Another use is to
determine the inhibition profile of compounds. The profiles of
several literature compounds and the implications for their
selectivity are discussed.

Compound inhibition profiles have also been used to compare
kinases to one another, with special attention to the tyrosine
kinases, the most common targets of kinase cancer drugs. A
more general analysis relates kinase similarity calculated using
the activity profile to that from sequence similarity, which
highlights interesting differences between kinome branches. This
is relevant to several problems in drug discovery, including the
tractability of individual kinase targets, their selectivity, the use
of compounds as probes for kinase cellular function, and the
estimation of a threshold of sequence similarity at which cross-
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Figure 1. Heat plot showing 203 kinases (y-axis, ranked by position in Sugen alignment) against 577 compounds (x-axis, grouped by KCS class
or chemotype). Bright spots indicate potent binding (low %control). Unselective compounds can be seen as bright vertical bands, for example, in
the oxindole class marked. Horizontal bright bands indicate kinome sub-branches that are frequently inhibited by compounds in many chemical

series, for example, FLT and CKI.

kinase activity of compounds becomes more likely, as well as
how this varies over different kinome branches.

Results and Discussion

The 577 compounds intended to represent the diversity of a
kinase compound collection were screened at 10 #M in a binding
assay format against a panel of 203 protein kinases. The design
of the compound set, the assay methodology, and the interpreta-
tion of the single-concentration data will be discussed in greater
detail (see Experimental Section).

Overview of Results. Results from the 10 uM single-
concentration profiling are displayed graphically in Figure 1.
Compounds are grouped horizontally by their structural class
(see Experimental Section). Kinases are ranked vertically,
according to their order in the Sugen kinome alignment,” so
that similar kinases are grouped together. Bright colors indicate
high affinity. Bright horizontal bands show branches of similar
kinases with similar activity profiles. Among these are the FL'T
tyrosine kinase branch, including KIT, FLT3, and PDGFRa/f3,
and the casein kinase 1 branch. Many compounds bind to these
kinases, but few show selectivity. Similarly, bright vertical bands
are also apparent. These show series of compounds that are able
to bind to many different protein kinases, for example, the
oxindoles. Conversely, dark bands indicate selective compounds
or infrequently bound kinases. One key observation is that
individual compounds tend to bind to kinases in groups
colocated on the same branches of the kinome. Such kinases
tend to track the activity patterns of one another. However, most
compounds bind to several such small scattered groups.

Distribution of Results by Protein Kinase. For every one
of the 203 kinases in the panel, at least one compound was
identified that showed affinity (%control < 10; see Experimental
Section for a definition). This significant achievement shows
that even by use of a relatively small number of carefully chosen
compounds, it is possible to find small molecule inhibitors of
previously unknown kinases.
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Figure 2. Number of compounds that bind to each kinase. The bar-
chart shows the distribution of hit-rates per kinase, using cutoffs of 1
(red = higher affinity, %control < 1) and 10 (blue = moderate affinity,
Yocontrol < 10).

Figure 2 shows the distribution of the number of compounds
bound by each kinase. For example, nearly 30 kinases were
able to bind over 100 compounds using a moderate binding
threshold definition (%control < 10). By use of a more potent
threshold (%control < 1), fewer than 10 kinases bound over
100 compounds. 60% of the kinases in the panel were bound
potently by 20 compounds or fewer, but a significant number
were bound by many more. In general, those bound by many
compounds were also bound by many different chemotypes.

The number of compounds that bind to a given kinase (see
Supporting Information, Table S1) may give an indication of
its tractability as a target. Some kinases were bound potently
(%control < 1) by many more compounds than others. Casein
kinases CK19 and CKle had high affinity for 148 and 170
compounds, respectively. GAK and AAK1 (AP2-associated
kinase 1) were also bound frequently (181 and 89 compounds),
as were PDGFRa/f, KIT, and FLT3 (95, 121, 117, and 80
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Figure 3. Number of kinases that bind each compound. The bar-chart
shows the distribution of hit-rates per compound, using cutoffs of 1
(red = higher affinity, %control < 1) and 10 (blue = moderate affinity,
Yocontrol < 10).

compounds). The least frequently bound kinases at the same
threshold were ASK1 (Arabidopsis signal-regulating kinase 1)
and ZAP70 (¢-chain TCR associated protein kinase 70 kDa),
which no compounds bound with %control < 1.

It would be interesting to speculate on the reasons for these
widely different hit-rates. Some kinases are more forgiving,
while some have more restrictive binding requirements. Caution
is needed in interpreting these results, since some assays are
more sensitive than others (see Experimental Section and Figure
S5a). In addition, the assays used were binding assays, not
activity assays, and were not conducted in the presence of ATP.
The kinases, screened as phage display fusion proteins, are also
not necessarily screened in their physiologically relevant state.
The influence of activation state, partner proteins, and associated
domains may affect the results greatly.

A recent report used thermal melting to measure binding of
156 compounds to 60 Ser/Thr kinases.'® Noting that no potent
inhibitors of the ERK family were found, the authors speculated
that low hit-rates were associated with kinases present in their
inactive states. In our study, ERK1 and ERK?2 showed a more
typical hit-rate and were bound with %control < 1 by 14 and
22 compounds, respectively, 11 of which were common to both.
In the previous study, SLK and ASK1 were among the most
frequently bound kinases. In the study reported here, SLK was
bound by 61 compounds with %control < 1, a high hit-rate in
accord with the previous results. In contrast, ASK1 had a low
hit-rate and was not bound by any compounds with %control
< 1. The differences between the two studies could be due to
different activation states of ASK1 and the ERKSs in the two
assays, to the sensitivities of the different binding assays used,
or to the use of fusion proteins but is perhaps more likely due
to differences in the compound sets.

Despite the diversity of the compound set, the results will be
influenced by the kinase targets on which GlaxoSmithKline has
worked historically. However, these results still give an indica-
tion of which targets are likely to be more tractable, with a
reasonable likelihood of finding hits within a diverse kinase
compound collection.

Distribution of Results by Compounds. Figure 3 shows the
distribution of the number of kinases bound by each compound.
The number of kinases to which some inhibitors bind may be
surprising. Hesperadin, the most extreme example, had high
affinity (%control < 1) to 126 out of the 203 kinases tested.
Sixteen compounds showed potent binding to at least 50 kinases.
It is possible that even these compounds might show good
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Table 1. Effect of Molecular Weight on Selectivity”

MW Ncpds Nunsel %o (Nunsel/Ncpds)
<300 165 10 6
>300—350 171 17 10
>350—400 117 16 14
>400—450 73 14 19
>450—500 35 7 20
>500 16 9 56

“ Compounds were binned by molecular weight. The number of
componds in each MW band, the number of unselective compounds (defined
as the number of compounds binding =20 kinases with %control < 1),
and the percentage of unselective compounds are shown.

windows of selectivity for certain targets if screened at lower
concentration.

At the other extreme, it is possible to find compounds with
very good selectivity. A total of 230 compounds bound to <10
kinases in this panel with %control < 10, and 33 compounds
did not bind to any of the kinases in this study. These are of
particular interest, as they had previously shown activity against
other kinases not included in this panel. Clearly it is possible
to find highly selective inhibitors of at least some kinases, even
using such a large kinase panel.

Influence of Molecular Weight. Molecular weight is one
factor that greatly affects the number of targets to which a given
compound binds. As shown in Table 1, the fraction of
compounds showing low selectivity (defined as those binding
>20 kinases with %control < 1) increases with molecular
weight. One interpretation is that potent low-MW compounds
are more likely to be selective than equipotent high-MW
compounds. However, the higher hit-rate of larger compounds
might simply result from the use of a fixed cutoff in a single
compound concentration screen. Potency against a molecular
target also correlates with molecular weight, so larger com-
pounds may still maintain a window of selectivity. Nevertheless,
this result shows the importance of molecular weight in
interpretation of selectivity, particularly when screening is
performed at a single compound concentration.

Compounds identified from cross-screening have multiple
potential uses. Selective compounds may be valuable tools for
target validation experiments. Even unselective inhibitors may
have utility, for example, as versatile components of screening
technology able to be applied to multiple targets or in X-ray
crystallography to help to obtain a useful crystal system. Most
importantly, hits are potential lead compounds for drug discov-
ery. Examples of some of these will now be given.

Discovery of Hits against New Kinase Targets. One of the
main benefits of this cross-screening exercise has been the
discovery of new activities for existing inhibitors. Results for
PIM1 will now be discussed as an example. PIM1 is a possible
therapeutic target in several types of cancer.'? The PIM family
is located on the CAMK branch of the kinome tree. Twenty
compounds showed %control < 1 at 10 uM. Encouragingly,
these included analogues of the literature imidazopyridazine
PIM1 inhibitor 1 (Figure 4, data not shown).'*> PIM1 K, values
were determined for 14 compounds from nine different chemical
series. Five compounds from four series had Ky values below
100 nM. Among these was 2 (Figure 4), a member of a family
of CHKI inhibitors,'* which bound to PIM1 with a Ky of 35
nM.

PIM1 is unusual because of the presence of a proline (Pro123)
in the hinge region of the ATP site.'® Because of this, it is unable
to make the commonly conserved H-bonding interactions to
inhibitors. One interesting outcome of this work was the
discovery that despite the atypical binding site, many inhibitors
of other protein kinases are able to bind to PIM1.
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Figure 4. Structures of literature compounds 1—18. Published targets include 1 PIM1,"* 2 CHK1,"* 3 IKK-3,'? 4a IKK-3,>' 5 INK3,%> 6 VEGFR,*
7 and 8 Aurora B,>*?° 9 LCK,?” 10 and 11 p380t,28'29 12 SYK,** 13 GSK3[)’,31 14 ALK5,? 15 cytokine antagonist,35 16a FLT3,°° 17 SRC,>” 18

p38a.?’

Because its unusual ATP binding site gives a greater potential
for compounds to adopt unusual binding modes, X-ray crystal-
lographic binding data were especially valuable for PIMI. It
was possible to solve the X-ray structures of three of the active
compounds in complex with PIM1 rapidly, which was helpful
in optimizing the potency and selectivity of the molecules.

Hits were also discovered against less well-studied kinases.
MPSK1 (myristoylated and palmitoylated ser/thr kinase 1, also
known as STK16 and PKL12) belongs to the NAK family on
the STE branch of the kinome. It has been linked to TGFf
signaling and to extracellular matrix-cell adhesion.'®'” Tt has
been shown to phosphorylate developmentally regulated GTP
binding protein 1, and a crystal structure of staurosporine bound
to its kinase domain has been solved.'® A total of 29 compounds
bound to MPSK1 with high affinity (%control < 1). Six
compounds from six series had Ky values below 100 nM,
including the azaindole 2 (24 nM).

Expanded Kinase Profiles of Literature Compounds.
Another outcome of this study is a wider knowledge of the off-
target activities of published kinase inhibitors. This is important
in understanding the results of target validation experiments that
use these compounds. Results for 13 selected literature com-

pounds (Figure 4) will now be summarized. Full results of
screening at 10 uM are shown in Table S1 (Supporting
Information), and K4 values are given in Table 2.

3 is TPCA-1, a thiophene carboxamide reported to be a
selective inhibitor of IKK-8 with ICso of 19.5 nM.'® Against
this assay panel, which does not include any of the four I«B
kinases, 3 was found to bind to 12 kinases with %control < 1.
These included the second kinase domain of JAK2, KIT, cFMS,
and EphB1 as well as others (Table S1). The compound bound
to 41 other kinases with %control < 10. One K4 value was
determined, against JAK2 (22 nM). In an assay measuring the
inhibition of JAK2 catalytic activity, the K; was determined to
be 5 nM (unpublished results). This compound has been
described as a selective IKK-£ inhibitor and used to study the
role of this kinase in cells®® but would perhaps be better
described as a dual IKK-A/JAK inhibitor with potential other
kinase activities.

The phenylcarboxamides are a series structurally related to
the thiophene carboxamides. The IKK-f ICsy of compound 4
is 650 nM, and that of the related compound 4a is 100 nM.?!
The selectivity profile of 4 in this panel is cleaner than that of
3, with only six kinases binding with %control < 10 (Table
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Table 2. Ky Values (nM) Measured for Literature Compounds 2—18¢

compd kinase Ky compd kinase Ky
2 PIM1 35 9 TYRO3 264
2 LKBI1 380 9 EPHA3 0.1
2 TNIK 160 9 EPHAS 3
2 MST2 75 9 EPHA4 5
2 NEK?2 483 9 EPHAG6 20
2 AAKI1 53 9 EPHB2 7
2 AXL 596 9 EPHB3 81
2 MPSKI1 24 9 EPHA2 8
3 JAK2 22 9 EPHALI 5
4 P38G 79 9 ADCK4 129
5 AKT3 >40000 12 SLK 395
6 DRAK2 353 12 TXK 623
6 SRPK1 361 13 MARKI1 >40000
7 MSK1 31 13 PIM2 207
7 MSK2 94 13 SKMLCK 16
7 AMPKA1 19 13 MPSK1 150
7 BRSK2 92 14 ARG 1870
7 KHS2 5 15 CLK2 10
7 PAK2 14000 15 CKla2 225
7 FES 149 15 CKl1d 58
7 LTK 52 15 CKlgl 59
7 ROS 77 16 MNK?2 1230
7 FAK 33 16 MARKI1 11000
7 PYK2 10 16 DRAKI1 96
7 TYK2 75 16 NEK?7 >40000
8 KHS1 53 16 GAK 367
8 INSR 506 16 KIT 111
8 IRR 276 16 PDGFRB 42
8 TNK1 85 16 FLT3 30
9 ACTR2B 1 16 LIMK2 >40000
9 BMX 36 17 TXK 80
9 TXK 10 17 FGR 7
9 BLK 1 17 FRK 2
9 YES 1 17 BRK 10
9 FYN 0.4 17 EPHA1 6
9 FGR 0.3 18 FRK 46
9 BRK 2 18 EPHA3 122
9 CSK 28

¢ Structures are shown in Figure 4.

S1). Of these, binding to CSNKle and GAK (cyclin G-
associated kinase) was also seen with compound 3. One Ky was
determined, against p38y (79 nM).

5 is an example of a cyanothiophene series of JNK3 inhibitors
with selectivity over other INK isoforms.? 5 itself has a reported
IJNK3 ICsy of 1.5 uM. The X-ray structure of this compound
shows a possibly unique binding mode in which the nitrile forms
a hydrogen-bond to the hinge region. The only kinases in this
panel showing %control < 30 were JNK3 and AKT3 (Table
S1; the AKT3 result was a false positive, as the K4 was found
to be >40 uM; see Experimental Section for a discussion of
the frequency of these results). No binding was detected against
JNKI1 and only a marginal effect was seen on JINK2, confirming
the report of the selectivity of this compound in a different assay
format.

Originally reported as a 390 nM VEGEFR inhibitor,”* 6 is a
member of the oxindole series. It bound to 23 targets with
Yocontrol < 1, including VEGFR2 (Table S1), and a further 25
kinases with %control < 10, confirming its low selectivity. Ky
values were obtained for two targets, DRAK2, also known as
STK17B (350 nM), and SRPK1 (360 nM). Other workers have
pointed out the broad inhibition profile of related oxindoles.”

7 is Hesperadin, another oxindole and a literature inhibitor
of cell proliferation and of Aurora B among other kinases.**
Defects in mitosis caused by this compound were attributed to
AurB inhibition, a conclusion supported by RNA: studies. It is
possible that this compound may still show a window of
selectivity for AurB, but in this assay panel it was the least
selective compound in terms of the number of kinases inhibited
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at 10 uM (126 with %control < 1, Table S1). These included
AurA, AurB, and AurC. Ky values were obtained against 12
targets, one of which, PAK2, was inactive (a false positive in
the single-concentration screening; see Experimental Section for
a discussion of the frequency of these). The rest had K4 around
or below 100 nM, as shown in Table 2.

VX680, compound 8, is an Aurora kinase inhibitor with
Ki(app) of 0.6 nM (AurA), 18 nM (AurB), and 4.6 nM (AurC).>
It was reportedly 100-fold selective over 55 kinases, with one
exception being FLT3 (30 nM). The compound binds to many
other kinases in this panel (including the Aurora kinases, there
were 32 kinases with %control < 1 and 37 more with %control
< 10). Four K, values were determined (Table 2) including
KHS1, also known as MAP4KS5 (53 nM), and TNK1 (85 nM).
These values compare well with those reported independently
by Ambit Biosciences (83 nM for both).”'" Another group has
studied this compound and report that it inhibits MELK and
SRC with 10-fold lower affinity than Aurora.® A clinical trial
of the compound was recently suspended after QTc prolongation
was found in one patient;® the extent to which off-target kinase
activities may have caused this is unclear.

9 is a bis-anilinopyrimidine inhibitor of tyrosine kinases
including LCK, BTK, LYN, SYK, and TXK.?” In this panel it
inhibited 48 kinases with %control < 1 (33 of them tyrosine
kinases, almost half of the 71 tyrosine kinases in the panel). A
further 27 kinases were bound with %control < 10. K4 values
for 16 kinases were determined and found to be below 100 nM
(Table 2). These included TXK (10 nM).

Biphenylamides such as 10 and 11 are inhibitors of p38c/f.
While 10 binds to p38 in its apo-like DFG-in conformation, 11
utilizes the DFG-out binding mode.*®2° 10 inhibited no kinases
in the panel apart from p38c and p385. While still quite
selective, 11 bound to PDGFRa and PDGFRf with %control
< 1 and to KIT, LOK, RAF1, and p38y with %control < 10.
This is a counterexample to the view that DFG-out inhibitors
are more selective than DFG-in compounds.

12, a [1,6]naphthyridine, is a SYK inhibitor with ICs, of 34
nM.*® To our knowledge no selectivity data have been published
for this series. In this panel, the compound appears relatively
selective. It bound to SYK with %control of 0.3, as well as to
13 other kinases with %control < 1 (Table S1). A further 27
kinases had %control < 10. The K4 for SLK and TXK were
determined to be 365 and 623 nM.

The pyrazolo[3,4-b]pyridine 13 is an 8 nM inhibitor of
GSK34.*' While GSK3 was not a member of the panel, the
compound bound to GSK3a with %control of 0 (indicating
potent binding). Otherwise, it was relatively selective, binding
with high affinity (%control < 1) to seven other kinases
including CDK2 (which was identified in the original publica-
tion) and PCTAIREL. Twenty-one additional kinases were
bound with %control < 10 (Table S1). Three potent K, values
were measured: skeletal muscle MLCK (16 nM), MPSK1 (150
nM), and PIM2 (207 nM) (Table 2).

14 is a 27 nM inhibitor of TGFf receptor kinase 1, also
known as ALKS5.?? It appears to be highly selective. As well as
TGFpSRI1, it bound to only three kinases with %control < 1
(GAK, CK106, and CKle). A further five kinases bound 14 with
9ocontrol < 10 (Table S1). The K; value for one of these (ARG,
also known as Abl2) was determined and found to be quite
weak, 1.9 uM. The high selectivity of this compound suggests
that TGFBR1 may indeed be the molecular target responsible
for effects seen in mouse rheumatoid arthritis™® and tumor
metastasis** models.
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15 is included in patent claims for interleukin and TNF
antagonists, with members of the series active in cellular
assays.” The activity of 15 itself was not disclosed. The
compound bound six kinases in the panel with %control < 1
(CLK1/2 and CK1 isoforms a2, 0, €, and y1). Ky values were
obtained against four kinases: CLK2 (10 nM), CK1a2 (225 nM),
CKl1y1 (60 nM), and CK16 (70 nM). Only 10 other kinases
were inhibited with %control < 10 (Table S1). This result is of
potential interest, as further confirmation of any relationship
between TNFo. modulation and these targets could be sought
using unrelated inhibitors with overlapping kinase activities.

In conclusion, the detailed profiles of these literature com-
pounds illustrate the wide-ranging selectivities of these mol-
ecules. Some are indeed selective, although screening against
this broad panel has revealed many additional activities. Such
detailed profiles give useful information about the utility of
compounds as tools and can suggest potential causes of any
observed off-target effects.

Comparing Compounds Using Their Kinase Activity
Fingerprints. Molecular similarity between pairs of compounds
is a familiar concept in cheminformatics.*® This is normally
calculated by comparing bit-strings of molecular descriptors such
as the presence of functional groups or patterns of connected
atoms. Another way to quantify the similarity between com-
pounds is by comparing their biological profiles, sometimes
called affinity fingerprints. This has been done previously with
diverse sets of compounds and with targets spanning multiple
target classes’"*® but not with a focus on kinase inhibitors.
The “compound SAR similarities” between all pairs of com-
pounds (a 577 x 577 matrix) were calculated from their kinase
activity fingerprints using two thresholds for activity, Tanl and
Tan10 (see Experimental Section for definitions). The aim was
to compare these matrices to one obtained using chemical
similarity. The two metrics are plotted against one another in
Figure S1 (Supporting Information).

Since one of the objectives when choosing the set was to
maximize the coverage of chemical diversity, there are few pairs
of compounds with high structural similarity. Over 99.5% of
pairs have structural similarity of <0.6. The few compounds
with high structural similarity are less alike than their similarity
score implies. For example, the few pairs with similarity of >0.8
are typically enantiomers, or regioisomers, identical apart from
the positions of large substituents. These would project into
different parts of the ATP site, so it is not surprising that such
compounds have different activity profiles. This is the case for
compounds plotted in the lower right-hand corner of Figure S1.

Even with allowance for the low number of truly structurally
similar compounds, the data show a trend for these to have
similar kinase profiles. Because of the large number of points
in Figure S1, the trend is more obvious when plotted in bar-
chart form (Figure 5). Almost 10% of compounds with high
(>0.6) structural similarity have high (>0.4) Tan10 compound
SAR similarity. Compound pairs with lower structural similarity
have a much lower chance of having a similar compound SAR
profile. Some structurally unrelated inhibitors have high com-
pound SAR similarity, but these are very uncommon. Only 0.7%
of pairs with structural similarity of <0.4 show compound SAR
similarity of >0.4. Expanding the data set to include more
structurally related analogues would make this result more
obvious.

These results provide some quantification of a trend that
would be expected to hold true for other diverse compound sets
and that has an important consequence. Two structurally
dissimilar kinase inhibitors that have the same primary target
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Figure 5. Normalized bar-charts showing the increasing compound
SAR similarity with compound structural similarity. Two different SAR
similarity thresholds are shown: (a) %control = 1; (b) %control = 10.

will probably inhibit a different spectrum of off-target kinases.
This observation confirms that it is important not to rely on a
single compound to elucidate the role of a kinase in cells.***°
The complete selectivity profile of tool compounds is rarely
known, and so it is difficult to say with confidence that a cellular
effect is due to a single kinase. The more tool compounds
sharing a common target that show the same effect, the more
likely that this is due to that target, provided that the compounds
are structurally dissimilar and not too unselective.

This concludes our chemocentric discussion of the data. We
now turn to an analysis of the biological targets, first a general
overview and then a closer inspection of the tyrosine kinases.
This is an important kinome branch for drug discovery,
containing as it does the targets for many of the marketed kinase
oncology drugs.

Comparing Kinases Using Their Compound Activity
Fingerprints. The matrix of kinase/compound affinities can be
used to compare pairs of kinases as well as to compare pairs of
compounds. This concept has been termed SAR homology
(SARAH)*!" and has been investigated using kinase-focused
sets*>** and with diverse sets of compounds and target
classes.”*”*® The conclusions of these experiments can now
be tested using a much larger set of compounds and kinases
and a complete data matrix.

Kinase SAR similarities between all pairs of kinases were
computed from their chemical fingerprints (see Experimental
Section). The resulting 203 x 203 kinase SAR similarity matrix
is shown in Figure 6. As before, kinases are ranked by their
position in the Sugen kinome alignment.”> Higher similarity
between pairs of kinases is indicated with brighter green spots.
Figure 6a shows the sequence similarity using the percentage
sequence identity over the amino acids of the kinase domain.
Squares close to the diagonal represent pairs of kinases that are
more closely related to one another by sequence and for which
similar compound profiles would be expected. Blocks of closely
related kinases correspond to distinct branches of the kinome
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Figure 6. Similarity between pairs of kinases, ranked by their position in the Sugen tree. The color represents similarity (black = 0, green = 1).
Major kinome branches are marked above the plots. Significant sub-branches are indicated with white labels: (a) amino acid sequence identity over
the kinase domain; (b) kinase SAR similarity, Tanl metric (see Experimental Section); (c) kinase SAR similarity, Tan10 metric; (d) kinase SAR
similarity, Tanl metric, including only relatively selective compounds inhibiting less than 20 kinases; (e) kinase SAR similarity, Tan10 metric,
including only compounds inhibiting less than 20 kinases.
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Table 3. Kinase SAR Similarities between Pairs of Kinases Referred to in the Text

kinase 1¢ kinase 2¢

kinase 1 kinase 2 J01D* Tanl” Tan10° Tan10-u“ n<1 n <10 n<1 n < 10
LKBI1 AAK1 25 0.45 0.58 0.49 70 127 85 186
RIPK2 LCK 26 0.46 0.45 0.38 34 80 45 103
RIPK2 P38A 24 0.17 0.18 0.12 34 80 15 34
CDK2 GSK3A 37 0.38 0.40 0.40 40 71 44 86
P38A P38B 75 0.40 0.63 0.63 15 34 27 41
P38A P38G 67 0.00 0.14 0.10 15 34 1 22
P38B P38G 65 0.00 0.17 0.13 27 41 1 22
CSK BTK 45 0.15 0.38 0.25 26 37 4 17
CSK ABLI1 47 0.28 0.31 0.07 26 37 11 44
FLT3 KIT 54 0.46 0.57 0.47 79 200 115 180
FLT3 FLTI1 49 0.39 0.42 0.28 79 200 50 110
FLT3 CSFIR 55 0.36 0.42 0.30 79 200 56 122
FLT3 PDGFRA 54 0.37 0.50 0.41 79 200 93 148
FLT3 PDGFRB 49 0.40 0.60 0.51 79 200 119 186
EPHAI1 FRK 42 0.70 0.48 0.30 15 56 19 49
EPHAI1 SYK 38 0.05 0.21 0.20 15 56 6 41

average (203 x 203) 28 0.08 0.13 0.05 25 57 25 57

“ The %identity of the two sequences over the kinase domain. ” The kinase SAR similarity scores using Tanl metrics (see Experimental Section). ¢ The
kinase SAR similarity scores using Tan10 metrics (see Experimental Section). ¢ The Tan10 metric omitting unselective compounds. ¢ The number of compounds
binding to each kinase using %control thresholds of 1 and 10. Average values for all pairs of kinases are shown. A full matrix of 203 x 203 kinases is in

Supporting Information.

(which are labeled above the matrix plots). Some of the
especially highly conserved sub-branches are indicated with
white labels. This view can be compared to the corresponding
matrices colored by kinase SAR similarity scores derived from
their affinity profiles. Two different activity cut-offs are shown.

The most important observation is that many of the blocks
of high-similarity kinases in Figure 6a are still visible in Figure
6b. These features are also present when the similarities are
calculated with a weaker activity threshold as shown in Figure
6¢. These plots show that despite the underlying complexity of
the data, when it is viewed in the format of Figure 1, there is
a statistical tendency for kinases with higher sequence similarity
to bind to similar compounds. These trends are especially clear
for sub-branches such as the SRC and EphA/B families of
tyrosine kinases.

Figure 6b and Figure 6¢ contain some bright spots far from
the diagonal. These indicate targets from different branches of
the kinome that have high kinase SAR similarity (pairs of
kinases sharing a similar inhibition profile that is unexpected
from sequence homology). These are potentially interesting
results. However, it is difficult to judge the significance of most
of these matches without K data to confirm the results, so they
should be regarded as tentative.

It is to be expected that the results of this exercise will be
compound-dependent. A few unselective compounds might
account for the kinase pairs with low sequence similarity that
show high SAR similarity. To investigate this, the 73 least
selective compounds (defined as those inhibiting >20 kinases
with %control < 1) were removed and the analysis was repeated.
Many of the remote-homology high kinase SAR similarity pairs
disappeared (Figure 6d,e).

Individual compounds often inhibit kinases that are far apart
in the kinome tree. However, this is much more common for
unselective pan-kinase inhibitors. When these are neglected, the
kinase SAR similarity follows patterns similar to those that
would be predicted from a simple sequence comparison of the
kinase domains, where compounds bind to closely related
kinases more often than to unrelated ones.

Kinases Sharing Unexpectedly High SAR Similarity. Not
all off-diagonal relationships disappear when unselective com-
pounds are removed. One such relationship is between LKB1
and AAKI1 (Figure 6e). The TanlO kinase SAR similarity

between these two assays is 0.58 (Table 3). The LKB1 tumor
suppressor,** also known as STKI11, is associated with
Peutz—Jeghers syndrome and is located on the CAMK branch
of the kinome close to CHK1. AAK1 (AP2-associated kinase
1)* is located away from the main kinome branches and has
not been strongly linked to disease. Both kinases bound many
compounds with high potency: LKB1 bound 70 compounds with
Ycontrol < 1 and AAKI1 bound 85. Forty-eight compounds
were common to both of which 19 were fairly selective (binding
less than 20 kinases with %control < 1). Five out of six
compounds whose Ky values were measured against both AAK1
and LKB1 showed K; < 1 uM against both kinases. For
example, compound 2 (Figure 4) had Ky of 380 nM against
LKBI1 and 53 nM against AAK1 (Table 2).

The significance of this unexpected similarity in inhibition
profile is unclear. AAK1 and LKB1 share 25% of residues over
their kinase domains. Within the 30 residues lining the ATP-
binding site, 42% of residues are identical, but kinase ATP-site
conservation is usually higher than domain conservation, and
this is is not an unusually high value. It is possible that these
compounds depend strongly on individual residues for their
interactions with the ATP sites of LKB1 and AAK1 which are
lost in the averaging of sequence similarity calculations,
although those that are conserved do not appear to be in any
way unusual. Indeed, LKB1 appears to have quite a typical
kinase ATP site, while AAKI is unusual in lacking some of
the conserved glycine residues in the glycine-loop rich region
of the ATP-site (Ala53, Ala58: Figure S2), so this result is
difficult to explain. However, our data suggest that any effort
directed at targeting AAK1 or LKB1 should monitor selectivity
against the other kinase.

Another unexpected relationship was seen between RIPK2
and a cluster of homologous Src-family kinases related to LCK.
RIPK2, receptor-interacting ser/thr kinase 2, is also known as
RICK or CARDIAK.**"*® It has been associated with innate
and acquired immunity,* although the requirement for kinase
activity for these functions is unclear. Despite sharing only 26%
kinase-domain sequence identity, RIPK2 and LCK have Tan10
kinase SAR similarity of 0.45 (Table 3, Figure 6e). Thirty-four
compounds bound to RIPK2 with %control < 1, and 45
compounds bound to LCK. Twenty-five of these compounds
are common to both targets, and 8 are fairly selective (binding
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less than 20 kinases with %control < 1). Of the 25 compounds
active against both kinases, three were submitted for RIPK2 K,
determination and binding was confirmed with Ky < 200 nM.
Two of the three had previously shown ICsy < 200 nM against
LCK in a different binding assay format (data not shown).

The p38 kinase inhibitor SB-203580 has been reported to
inhibit RIPK2.""°*! This compound was not included in this
study, but a number of other p38a inhibitors were. The Tan10
kinase SAR similarity between p38c and RIPK2 was low, 0.18
(Table 3). This implies that in spite of the result for SB-203580,
p38a kinase inhibitors are no more likely to inhibit RIPK?2 than
any other kinase inhibitor.

It is possible that pairs of kinases with unexpectedly high
SAR similarities share unusual conformational features that are
not obvious from their sequences that are responsible for the
similar binding profiles. Such conformational differences might
be intrinsic to the sequence, perhaps due to N- or C-terminal
extensions to the kinase domain. They might be induced by
particular phosphorylation states of the two kinases, or non-
native due to the use of a T7 phage fusion protein. Alternatively,
when 203 x 203 kinase pairs are compared, some of which
have high hit-rates, a certain number of similar patterns would
be expected by chance alone. Results such as these deserve
further investigation, perhaps by measuring catalytic activity
of the full-length kinase sequence against full-length substrate.

Comparing Kinase SAR Similarity to Phylogenetic Simi-
larity. Another way to represent the data in Figure 6 is to plot
the kinase SAR similarity derived from activity fingerprints
against the amino acid sequence identity over the kinase domain
(Figure 7, Figure S3).

Whichever kinase SAR-similarity metric is used, the conclu-
sion is the same. There is no linear relationship between kinase
sequence similarity and SAR similarity. However, there is a
difference between pairs of kinases with below 40—50%
sequence identity and those with above that threshold. When
two kinases share over 40—50% sequence identity in their kinase
domains, it is likely that they will show reasonable SAR
similarity and that compounds are likely to behave similarly
against them. More distantly related kinases with <40%
sequence identity are much less likely to have significant SAR
similarity. Rarely, some distantly related kinases show high SAR
similarity and some closely related kinases show low SAR
similarity. These uncommon results become less frequent when
unselective compounds are removed from the analysis (Figure
7b). These results accord well with an analysis of sparse ICs,
literature data over a smaller number of kinases and com-
pounds.** This investigation used a different SAR-similarity
metric but gave rise to a similar diagram that appeared to show
the same change in behavior at 40—50% sequence identity. This
study considered more complex sequence metrics, including the
use of an amino acid similarity matrix over the kinase domain
and over the residues of the ATP binding site, but concluded
that these correlate closely with the simple %identity over the
kinase domain and so would not alter the outcome.

A consequence of these results is that it is relatively likely
that compounds that inhibit one kinase will show activity against
others from the same branch, provided that these kinases are
related by over 40—50% sequence identity. Outside these tight
kinome sub-branches, less closely related kinases might also
be inhibited by the same compound but with lower probability.
A given compound can inhibit distantly related targets across
diverse parts of the kinome, as can be seen by examining Figure
1. However, this occurs less frequently, and it is not readily
predictable which targets those will be.
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Figure 7. Kinase SAR similarity plotted against kinase sequence
similarity (amino acid %identity over kinase domain): (a) Tan10 metric
(see Experimental Section); (b) Tan10 metric, with unselective com-
pounds removed (those inhibiting 20 or more kinases with %control
< 1). Similar plots are shown for the Tanl metric in Figure S3
(Supporting Information).

Differences within Kinome Branches. A closer investigation
reveals that this 40—50% rule does not apply equally to all
branches of the kinome. For example, in Figure 6b—e the
tyrosine kinase sub-branches are clearly visible as areas within
which kinases have high SAR-similarity. In contrast, in the
MAPK region of the CMGC branch, kinase SAR similarity is
less apparent than the structural similarity would suggest (note
the presence of a bright box in this region in Figure 6a and its
absence in Figure 6b—e). To investigate this interesting result,
pairs of kinases within the same branch of the kinome were
considered separately for five branches (AGC, CAMK, CMGC,
STE, and TK) as shown in Figure 8. For each pair of kinases
in a branch, the kinase domain sequence identity and SAR
similarity were partitioned into bands (<30%, 30—40%, etc.).
The pie charts in Figure 8a illustrate, for pairs of kinases tested
that lie within each branch of the kinome, the way that the kinase
SAR similarity increases with increasing domain sequence
identity. While some parts of this plot are more sparsely
populated than others, it appears that different branches behave
differently. For example, pairs of kinases on the AGC and
CMGC branches that share 40—50% sequence identity (red
boxes) have lower SAR similarity than pairs with the same
sequence identity on other branches.
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Figure 8. Dependence of kinase SAR similarity on sequence identity
for different kinome branches. Each pie-chart represents pairs of protein
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of pairs of kinases with given SAR similarity. The numbers above each
pie indicate the number of pairs of kinases. (b) The conservation of
gatekeeper residues between pairs of kinases. Pairs with different
gatekeeper residues are colored black.

It is likely that these differences between branches are caused
by subtle differences within the ATP-site that are not captured
in the kinase domain sequence identity scores, perhaps because
of single amino acid changes. For example, the “gatekeeper”
residue is important for inhibitor selectivity, as previously
noted.*?

To see the extent to which conservation of the gatekeeper
residue may influence the above observations, each pair of
kinases was flagged according to whether the gatekeepers are
the same or different. Figure 8b shows how the proportion of
pairs of kinases tested where the gatekeeper residue is invariant
increases with increasing sequence identity. Unsurprisingly, this
proportion increases with increasing kinase domain % identity,
but the rate at which it changes is different for different branches.
Overall, the variability of the gatekeeper residue within the
CMGTC branch is similar to that within the TK branch: just under
30% of all pairs of kinases within both branches for which
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experimental results were measured have the same gatekeeper
residue. This is far lower than the 80% conserved within the
STE branch. However, for pairs of kinases screened that are in
the critical region where kinase SAR similarity transitions from
low to high (40—50% sequence identity) gatekeeper residues
are conserved less frequently in the CMGC branch than in any
other. The lower than expected SAR similarity in this branch
in the 40—50% sequence identity band could be accounted for
by compounds that exploit the different gatekeeper residues.
This is consistent with the literature for inhibitors of MAP
kinases on the CMGC branch where gatekeeper residue size
differences have been exploited to gain selectivity.’?

As in the CMGC branch, pairs of kinases in the AGC branch
also have lower SAR similarity in the 40—50% identity range
than other branches (Figure 8a). The AGC kinases conserve
their gatekeeper residues more often, as frequently as TK and
CAMK kinases (Figure 8b). In contrast to the CMGC kinases,
variation in the gatekeeper residue is unlikely to explain the
greater selectivity within the AGC family. Some other explana-
tion not apparent from sequence identity must account for this.
Perhaps in the AGC family ATP-site residues other than the
gatekeeper can be utilized to gain selectivity. Alternatively,
compounds might exploit conformational differences between
different AGC kinases that are not reflected in kinase domain
similarity scores.

One final observation is that the SAR similarity between
kinases with a given sequence similarity is higher in the tyrosine
kinase branch than in other branches (Figure 8a). This suggests
that it may be harder to develop selective inhibitors of kinases
on the TK branch than others. Although it may be more difficult
to find selective inhibitors of the tyrosine kinases, it is still
possible, and exceptionally selective inhibitors are known.
Lapatinib (N-(3-chloro-4-{[(3-fluorophenyl)methyl]oxy }phenyl)-
6-[5-({[2-(methylsulfonyl)ethyl]amino } methyl)-2-furanyl]-4-
quinazolinamine bis(4-methylbenzenesulfonate) monohydrate)
was not present in this compound set but has been reported to
bind to only 3 out of 290 kinases, and only to EGFR with
submicromolar Ky, in a panel that did not include its other known
target ErbB2."" This compound takes advantage of an unusual
C-helix-out conformation of the EGFR kinase domain and has
a slow dissociation rate that may contribute to its selectivity.>

Kinase SAR Similarity Tree. Trees have been used to group
kinases into families using similarity matrices derived from SAR
data, by analogy to evolutionary distance for phylogenetic
trees.*>** While this involves loss of information compared to
a matrix plot such as that shown in Figure 6, it is easier to
view.

The tree generated from the compound binding data is shown
in Figure 9, alongside the sequence-based tree (see Experimental
Section). In general, the conclusions reported for a smaller data
set holds true.** Kinases that cluster closely in the sequence
similarity tree also cluster in the SAR similarity tree. For
example, the ephrin family, the PDGFR family, the SRC family,
and others in the TK branch are grouped together, as are most
of the AGC kinases and the CMGC kinases. There are
differences in the linkages between less closely related groups.
However, these are the linkages that are of lower certainty in
the sequence-based tree, based upon more marginal differences
in sequence homology.

Other differences are more significant. GSK3a is associated
more closely with the cyclin-dependent kinase sub-branch than
its location on the phylogenetic tree would suggest. This has
previously been noted for GSK35.4* A second example is the
location of isoforms of p38 (a, 3, and y). They are closely
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Figure 9. (a) Kinome phylogenetic tree, reconstructed using kinase domain amino acid %identity from the Sugen alignment.” (b) Kinase tree
constructed from SAR data (see Experimental Section). Colors represent the kinome branch.
homologous over their domains (o and f share 75% identity,
ocand y 67%, f and y 65%). Nevertheless, the SAR tree places
them in different locations: p38c. and p383 appear alongside
each other, far from p38y. This is as expected because of the

different gatekeeper residues (threonine in the o and 3 isoforms,
methionine in y and o) that are known to influence inhibitor
binding.>* Kinase SAR similarity metrics for these pairs of

targets are shown in Table 3.
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Some other differences between the positions of kinases on
the SAR and sequence trees are harder to rationalize. For
example, JINK1 and JNK3 are grouped together while JNK2 is
found close to p38a/f. These results differ from data from
activity assays where SAR from the JNKs tends to correlate
well (unpublished results). Tan10 hit-rates for the JNKs in the
binding assay vary between 104 for JNKI1, 54 for JNK2, and
203 for JNK3 (Table S1). Lower sensitivity for the JINK2 assay,
together with the use of Tanimoto coefficients with a fixed
activity threshold, could be responsible for the separation of
the JNKSs in the tree. The lower hit-rate for JNK2 may have
arisen if it was assayed in a different state compared to JNK1/
3. Many factors might explain this, including the possibility
that they are in different activation states because of differential
phosphorylation or because of different behavior of the kinase
domain in the context of a T7 phage fusion protein.

Similarly, AKT1 and AKT3 are found together, close to other
AGC family kinases, but AKT2 is found next to PAKI.
Differences between the AKT isoforms may be explained by
the fact that all three have a low hit-rate (Table S1). In this
situation, one borderline result close to the %control threshold
used to define binding can have a significant effect on the
Tanimoto similarity coefficient. This underlines the importance
of the choice of analysis metric and of care in interpretation of
the results.

The use of other similarity metrics might help to address this,
but using a larger compound set would be the best solution.
Because of these uncertainties, some of the relationships between
kinases, especially those with low or very different hit-rates
(Table S1), are tentative.

A Closer View of the Tyrosine Kinases. The tyrosine
kinases have been an especially active area of research. Patterns
of high SAR-similarity within the tyrosine kinases can be seen
in Figure 10, a magnification of part of Figure 6a and Figure
6¢. Conserved sub-branches include the Src family, FER and
FES, the FGFRs, the PDGFR branch, the IR branch, the ERBs,
and the EphA/EphBs. Comparing the SAR-similarity matrix
with a sequence-based similarity matrix (Figure 10) identifies
regions of interest.

For example, consider the positioning of CSK (c-Src kinase)
in the kinase sequence-based tree. It has roughly the same kinase
domain sequence identity to ABL and to BTK, 47% and 45%,
respectively (Figure 10a and Table 3), on different tyrosine
kinase sub-branches. All three kinases contain SH3/SH2 do-
mains N-terminal to the kinase domain, while BTK contains
an additional pleckstrin homology domain. By kinase domain
sequence similarity alone, it would be difficult to predict whether
CSK would bind to compounds more like ABL or more like
BTK. From Figure 10b, the SAR similarity of CSK is closer to
that of the SRC/LCK family kinases than to ABL/ARG, FER/
FES, or the TEC family. A more detailed analysis of the ATP
sites than is possible here might explain this result. Alternatively,
it may reflect the ability of ABL to bind compounds by adopting
a DFG-out conformation.>® At least in the state in which it was
assayed, CSK seems to be unable to bind these compounds.

The PDGFR/FLT branch will be used as an example of a
practical use of this analysis. FLT3 is a target for intervention
in acute myelogenous leukemia.™ The kinases with highest SAR
similarity to FLT3 include FLT1, KIT, PDGFRa/f3, and cFMS
(CSF1R) (Figure 10b, Table 3). This result is as would be
expected from a sequence similarity analysis of kinases phy-
logenetically related to FLT3, as all of these share 49—55%
sequence identity with FLT3.
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However, the extent to which these kinases are inhibited by
the same compounds may be surprising. Eighty compounds
showed %control < 1 against FLT3. Of these, 58 had %control
< 1 against PDGFRS and 62 against KIT. Out of 9 compounds
whose K4 was measured against FLT3, PDGFR, and KIT and
for which the K4 for FLT3 was below 100 nM, all nine had K4
below 100 nM against PDGFRfS and 7 against KIT. For
example, the 2-aminopyrazole 16 (Figure 4) had K4 of 30 nM
for FLT3, compared to 111 nM for KIT and 42 nM for
PDGFRf. The related pyrazole 16a is claimed as a 31 nM
inhibitor of FLT3 (example 37 in patent W02005047273).%¢

From the results above, this cross-inhibition seems almost
universal, suggesting that researchers interested in FLT3 inhibi-
tors should screen inhibitors of these related kinases. This would
be predictable from sequence.

Similar suggestions can be made with a lesser degree of
confidence for more evolutionarily distant pairs of tyrosine
kinases with high SAR similarity found in this analysis that
would not be readily predictable from sequence. One example
is the relatively high SAR similarity seen between the ephrin
receptor family, e.g., EphA1, and homologues on the SRC and
LCK branches, e.g., Fyn-related kinase FRK (marked in Figure
10b). The Tan10 SAR similarity between EphAl and FRK is
high, 0.48 (Table 3). FRK and another tyrosine kinase, SYK,
have comparable kinase domain sequence identity to EphAl,
42% and 38%, respectively. However, the Tan10 SAR similarity
seen between the ephrin receptor family and SYK (0.21) is much
lower than that between EphA1 and FRK (0.48).

Two examples of compounds that give rise to these SAR
similarities will now be given. 17 is a member of a series of
literature SRC inhibitors.’” In this study it had K; of 5 nM
against EphAl and 2 nM against FRK, and yet showed no
detectable binding to SYK at 10 uM. 18 has Ky of 122 nM
against EphA3 and 46 nM against FRK and also did not bind
potently to SYK. 18 belongs to a class of biphenylamide known
to bind to p38c in a DFG-out conformation.”® Several other
compounds believed to require the DFG-out conformation also
bound to the ephrin receptor family and to FRK but not to SYK.
It is likely that the basis for selectivity of some of these
compounds for FRK and the ephrin receptor family and against
SYK is due to binding to a conformation that SYK cannot adopt.
It must be remembered that in a cell the accessibility of such
conformational binding requirements may depend on the activa-
tion state, the presence or absence of cofactors, or other
influences beyond the kinase domain that are not present in the
format of the binding assay used in this study.

DFG-Out Compounds. Eighteen compounds in the set were
judged to have the potential to bind in the DFG-out conforma-
tion, on the basis of containing a diarylamide or -urea group
positioned in the back pocket region.”® Although it cannot be
said with certainty that such compounds will bind to each of
their target kinases in the DFG-out conformation, it is interesting
to compare the profiles of these compounds with those of the
rest of the compound set. Twenty-five out of the 36 kinases
that bind to at least half of these compounds are found in the
tyrosine kinase branch (Table S2). This may indicate that
tyrosine kinases have a greater propensity to adopt the DFG-
out conformation under these assay conditions, perhaps because
they share some common modes of inactivation. Alternatively,
different types of compound may be required to exploit this
conformation in other kinases.

Conclusions

The ability to carry out high-throughput profiling of com-
pounds against panels of kinases has the potential to change
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Figure 10. Similarity between pairs of tyrosine kinases: (a) sequence similarity (%identity in kinase domain) within the tyrosine kinases; (b)
SAR-similarity matrix using Tan10 metric (%control = 10 threshold). Sub-branches discussed in the text are labeled.

the way that inhibitors are selected and optimized.” A total of
577 compounds have been screened against 203 kinases. The set
of compounds is representative of a corporate kinase screening
collection, accumulated over years of screening and synthesis.
(1) At least one hit was found against every kinase. For most
targets, multiple active compounds covering different chemotypes

were found. This hit-rate is very high compared to that normally
obtained from diverse or focused screening, showing the value of
cross-screening for kinase hit identification. Useful hits were found
against novel kinases, for example, PIM1 and MPSK1.

(2) Different kinases have very different hit-rates. With the
caveats mentioned earlier, the tractability of different kinases
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(at least as defined by their ability to bind multiple inhibitors)
seems to be highly variable. This information could be useful
at the earliest stages of target selection, other factors being equal,
to choose targets with a good chance of finding fairly selective
lead molecules.

(3) Selective compounds bind to small clusters of kinases
colocated on the kinome phylogenetic tree. Instead of binding
to larger clusters of kinases, unselective inhibitors bind to
multiple small clusters. Given the relative ease with which hits
could be found for most targets by cross-screening this small
compound set, a greater challenge would be to optimize them
to the desired selectivity profile. It was possible to identify
selective hits against some targets, and some compounds that
had previously been shown to inhibit other protein kinases did
not bind to any of the kinases in this panel. However, other
targets only produced unselective starting points. When starting
with unselective hits from this approach, at least their kinase
profiles are known and attempts can be made through chemical
modification to eliminate the unwanted activities. There are
many examples in the literature of the use of rational approaches
to dial out unwanted kinase activities in lead optimization.

The results give an indication of the number of kinases that
different compounds can inhibit and how they are likely to be
distributed around the kinome tree. Examples have been shown
of the use of this profiling to identify off-target activities of
compounds. Repeat measurements and Ky determinations would
be desirable to confirm these results. It is critically important
to understand the broad kinase selectivity profile of tool
compounds and leads. Since this is currently expensive, it is
impractical to do this for every compound in a lead optimization
series. Because similar compounds tend to show similar profiles,
this is probably not even necessary. However, we recommend
that profiling be carried out early on and again periodically
during lead optimization to check that the profile has not
changed.

(4) Compounds that inhibit the same target but are structurally
dissimilar are likely to have a different spectrum of off-target
kinase activities. The consequences of inhibiting most kinases
is poorly understood, raising questions about what to do if an
off-target activity is detected. In a program with multiple lead
series, one sensible strategy is to manage risk by choosing to
optimize series that have different off-target activities. Even
structurally diverse compounds that inhibit the same primary
target are likely to inhibit the same closely related kinases unless
they contain exploitable differences within the ATP site. Each
compound is also highly likely to inhibit other less closely
related kinases found on different branches of the kinome. Our
results suggest that these remote interactions are likely to be
quite unpredictable. However, our analysis also suggests that
these diverse kinases are likely to be different for different
chemical series. This result may influence the approach used
to search for backup series in an active program. To reduce the
risk of both compounds having the same undesirable off-target
activity, the backup should be as chemically dissimilar as
possible from the first lead series. While intuitive, this result
also has important consequences for investigators selecting
multiple tool compounds for use in cellular target validation
experiments.

(5) Pairs of kinases sharing high sequence similarity are more
likely to bind a similar range of inhibitor chemotypes than less
closely related kinases. Above a kinase domain sequence identity
threshold of around 40—50%, kinases become more likely than
random to bind the same compounds.
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(6) All kinome branches are not the same. Pairs of tyrosine
kinases with a given sequence similarity to one another are more
likely to bind to the same compounds than kinase pairs on other
branches that have the same sequence similarity. Selectivity
between tyrosine kinases may therefore be harder to achieve
than between kinases on other branches.

Decisions about what selectivity profile is desirable are
frequently made at the start of a program based entirely on
biological knowledge. The sort of information gathered here
can add pragmatism to these criteria. For example, kinases
sharing more than 40—50% sequence identity have a greater
chance of being inhibited by the same compounds than more
divergent kinases. If selectivity regarded as essential for the
efficacy or safety of a given target is likely to be unachievable
because of high sequence similarity, that target may be best
avoided in favor of another.

The compound set used here was limited in size and was
constrained by the requirement for previously measured activity
against a small subset of kinases. It is important to continue to
add to the diversity of kinase compound space by preparing
new compounds in order to increase the chances of finding hits
with different selectivity profiles. Increasing the size of the
screening data set, both in compounds and kinases screened,
will allow our conclusions to be tested and hopefully confirmed
with greater confidence.

We have attempted to summarize the main results and
conclusions. Many of these will seem intuitive to those who
have been active in the kinase field for a long time but will be
new to others. The results should be valid over the subset of
~40% of the genomic kinases covered by these assays. Indeed,
conclusions could tentatively be drawn for 50% of the human
kinases, assuming that those with >50% identity to one of the
kinases screened behave like their homologues.

Experimental Section

Selection of Compound Set. The compound set was chosen with
the aim of covering known kinase compound space as thoroughly
as possible using up to 600 compounds.

Daylight SMARTS definitions (“Kinase Compound Set (KCS)
Classes”) have been defined to divide the GSK compound collection
into manageable and structurally related subgroups (unpublished
results). These are applied to lists of compounds in hierarchical
order so that each compound is assigned to one class. The tightest
definitions are applied before more general classifications. For
example, a substructure query to identify 2,4-bis-anilinopyrimidines
comes before pyrimidine substructures without the 4-aniline group.
Definitions that include only the pyrimidine ring are found toward
the end of the list, to capture a much more diverse range of
compounds that still have some features in common. Compounds
not matching any of these definitions are put into a miscellaneous
group. The list of definitions is periodically updated to take account
of new classes of kinase compounds.

Available compounds that had shown activity (ICsp < 5 uM)
historically against at least one kinase were assigned to a KCS class.
Additional clustering was applied using Daylight fingerprints and
other clustering methods to assist in visualization. Simple molecular
properties were also calculated. Each KCS class was examined in
turn, and one or two representative molecules were chosen from
each by medicinal chemists familiar with protein kinases and with
each series. The aim was to choose simple, low molecular weight
molecules to represent the class. Where examples from one KCS
class showed divergent activity profiles against different protein
kinases, one example from each type was picked. KCS classes
showing higher diversity (multiple chemotypes or different clusters
of biological behavior as judged by the chemists) were represented
using more compounds. The 2,4-dianilinopyrimidine class was the
most heavily represented and included 14 examples, but this is still
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under 2.5% of the compound set. Most compound classes were
represented by one or two molecules. A total of 577 compounds
were screened at Ambit Biosciences. These covered a total of 130
KCS classes as well as 25 miscellaneous singleton compounds. A
search of the AurSCOPE kinase database® revealed that 9% of
the compounds appear in GSK publications, 5% are in publications
from other sources, and the rest either are unpublished or lack
published activity data.

While this manuscript was in preparation, the Structural Ge-
nomics Consortium (SGC) reported profiling results against 60
kinases of 156 inhibitors, mostly commercially available com-
pounds.'® While an impressively large set, this covered 30 KCS
classes and was biased toward oxindoles (22 examples) and
staurosporine analogues/bis-indole maleimides (17 examples). The
58 compounds classified as miscellaneous included 15 containing
activated double bonds. The 577 compounds used here contained
no such potentially reactive features. They are also considerably
more chemically diverse. Only 51/577 compounds have Daylight
fingerprint similarity of >0.6 to any of the compounds in the SGC
study. The other large-scale profiling results reported to date used
an updated superset of the panel reported here, including 317
kinases, several of which are disease-relevant mutants. However,
the compound set was relatively small, comprising 38 literature
compounds. '

Assays. The data presented here were generated at Ambit Bio-
sciences, using binding assays, as opposed to activity assays, as
previously described.”'" Kinases were expressed as fusion proteins
to T7 phage. In general, full-length constructs were used for small
kinases and catalytic domains for large kinases. T7-kinase-tagged phage
strains were mixed with known kinase inhibitors immobilized on
streptavidin-coated magnetic beads and with test compounds at a single
concentration of 10 uM. Test compounds that bind to the kinase ATP
site displace the immobilized ligand from the kinase/phage, which is
detected using quantitative PCR. The results are reported as the
percentage of kinase/phage remaining bound to the ligand/beads,
relative to a control (DMSO lacking a test compound). High affinity
compounds have %control = 0, while weaker binders have higher
Yocontrol values. Results are reported for screening against 203 human
kinases, listed in Table S1. The positions of these on the human kinome
tree are shown in Figure S4.

Single-Concentration Data Quality and Interpretation. False
negatives and positives inevitably occur in single-concentration
screening. Confirmation of these results and quantification of affinity
requires Ky measurement. Because many compounds approached
complete competition for binding at 10 4M, it was necessary to
select compounds for K, determination. Priority was given to
confirming results for compounds showing relatively selective
inhibition of targets of special interest.

By comparison of Kj to single-concentration results for a given
kinase, good correlation was found (Figure S5a). However, as there
were shifts in the slope and intercept between targets, the translation
between single-concentration and precise Ky values was kinase-
dependent. Comparison between single-concentration data and ICs,
values generated internally in other assay formats also showed
acceptable correlation. This was especially true for binding assays
but encouragingly also held for assays measuring catalytic activity.
For example, Figure S5b shows good correlation between the single-
concentration results for LCK and results generated for murine LCK
using a catalytic assay.

K, Determination. A total of 1180 Ky values were determined
for selected compounds/assays where single concentration results
had shown %control < 10. Of these, 63 returned K4 > 10 uM (~5%
false positive rate). More potent single concentration results gave
lower Ky values, with nearly 87% of compounds with %control <
1 at 10 uM giving submicromolar K, values. Weaker single
concentration results (%control > 10) rarely gave K4 < 1 uM (11/
141, or under 8%). Since the selection of compounds and assays
for K, determination was biased toward confirming interesting or
surprising selectivity results at single concentration, these values
overestimate the true false negative and positive rates. As reported
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elsewhere, the false positive rate of this assay format was 2.4%
and the false negative rate only 0.2%."

On the basis of this, while individual results of interest should
be confirmed by K, determination, errors seem to be low in
frequency. It is valid to use the single-concentration data to draw
wider statistical conclusions.

Generation of Activity-Based SAR Similarity Scores. Bit-
strings were constructed in which each bit-string represents a
compound and each bit represents binding affinity for a kinase.
Bits receive a value of 1 if the binding affinity is below a %control
threshold (active), and 0 if it is above (inactive). Different binding
affinity thresholds were tried; here, results are given for %control
thresholds of 1 (Tanl) and 10 (Tanl0). The use of variable
thresholds for different assays based on the distribution of active
compounds was considered but was not used because it cannot be
assumed that two kinases should have the same hit-rate from this
data set. The fingerprints of each pair of compounds were compared
using the Tanimoto similarity coefficient*® to generate “compound
SAR similarity” values ranging from O (dissimilar) to 1 (similar).
The process is represented graphically in Figure S6 (Supporting
Information).

In an identical way, bit-strings were generated for each kinase,
where each string represents a kinase and each bit represents binding
affinity of a compound, and used to compare targets to each other.
These bit-strings were constructed exactly as described before for
the compound fingerprints, using the same Tanl and Tan10 activity
cutoffs, using the rows instead of the columns in the matrix. The
fingerprints of each pair of kinases were compared using the
Tanimoto similarity coefficient to generate “kinase SAR similarity”
scores ranging from O to 1. Other similarity metrics were also tried.
Taking the logarithm of the %control values instead of using a
binary active/inactive descriptor, strings of binding data can be
treated as multidimensional vectors. Similarity can then be ex-
pressed as the Euclidean distance between two vectors, or as the
angle between the vectors. These metrics gave the same conclusions
as the Tanimoto coefficient (results not shown).

Selectivity. The selectivity of compounds within a kinase panel
can be quantified as the fraction of kinases bound at some
threshold.'" Here, the panel is a constant 203 targets, so selectivity
was expressed as simply the number of kinases bound at a given
Yocontrol threshold, usually <1.

Compound Structural Similarity. Structural similarity between
all pairs of compounds was calculated using the DayPerl toolkit.®’
Fingerprints were generated with default parameters (minstep 0,
maxstep 7, size 1024). Similarity was calculated between pairs of
fingerprints using the Tanimoto coefficient.

Kinase Sequence Similarity. Sequence similarity between all
pairs of kinases was expressed as the percentage of identical amino
acids within the kinase domain using the Sugen alignment’
downloaded from the http://Kinase.com Web site.®* More subtle
similarity matrices were not used, nor was the ATP site considered
separately, because previous studies have shown high correlation
between these metrics and the overall domain sequence identity.*

Generation of Trees. Tanl and Tan10 similarity scores for all
pairs of kinases were recalculated using only the more selective
compounds (binding to less than 20 kinases with %control < 1).
These were converted to distance matrices using the formula 100[(1
— TanSim)'?]. The GCG Growtree program was used to produce
tree files using both Neighbor-Joining and UPGMA methods.®* The
TreeDyn program® was used to visualize these and produce the
figures. The tree shown in Figure 9b is the NJ tree generated from
the Tan10 similarity matrix.

Acknowledgment. The authors acknowledge Drake Egg-
leston for his encouragement and his support in obtaining
funding for compound profiling. We thank Melissa Gomez and
Bob Johnson for LC—MS analysis to test compounds for
integrity and purity, Brandy Lloyd and Carol Jenkins for
compound shipment, Stefan Senger for searching the Aureus
database, and scientists at Ambit Biosciences for compound



Chemical Coverage of Kinome Space

profiling in the Ambit kinase panel. We are grateful to Jerry
Adams, John Christopher, Chun-wa Chung, Andrew Leach, and
lain McLay as well as Patrick Zarrinkar (Ambit Biosciences)
and three anonymous referees for critical reading of the
manuscript.

Supporting Information Available: A pdf file containing Tables
S1 and S2 and Figures S1—S6; a txt file containing 203 x 203
kinase vs kinase matrix showing SAR similarities and counts of
compounds binding with different thresholds. This material is
available free of charge via the Internet at http://pubs.acs.org.

References

(1) Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Glivec
(STI571, imatinib), a rationally developed, targeted anticancer drug.
Nat. Rev. Drug Discovery 2002, 1, 493-502.

(2) Giamas, G.; Stebbing, J.; Vorgias, C. E.; Knippschild, U. Protein
kinases as targets for cancer treatment. Pharmacogenomics 2007, 8,
1005-1016.

(3) Gaestel, M.; Mengel, A.; Bothe, U.; Asadullah, K. Protein kinases as
small molecule inhibitor targets in inflammation. Curr. Med. Chem.
2007, 14, 2214-2234.

(4) Krystal, G. W. Imatinib mesylate (STI571) for myeloid malignancies
other than CML. Leuk. Res. 2004, 28 (Suppl. 1), S53—S59.

(5) Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam,
S. The protein kinase complement of the human genome. Science 2002,
298, 1912-1934.

(6) Hanks, S. K. Genomic analysis of the eukaryotic protein kinase
superfamily: a perspective. Genome Biol. 2003, 4, 111.

(7) Paolini, G. V.; Shapland, R. H.; van Hoorn, W. P.; Mason, J. S.;
Hopkins, A. L. Global mapping of pharmacological space. Nat.
Biotechnol. 2006, 24, 805-815.

(8) Bain, J.; Plater, L.; Elliott, M.; Shapiro, N.; Hastie, C. J.; McLauchlan,
H.; Klevernic, L.; Arthur, J. S.; Alessi, D. R.; Cohen, P. The selectivity
of protein kinase inhibitors: a further update. Biochem. J. 2007, 408,
297-315.

(9) Fabian, M. A.; Biggs, W. H., III; Treiber, D. K.; Atteridge, C. E.;
Azimioara, M. D.; Benedetti, M. G.; Carter, T. A.; Ciceri, P.; Edeen,
P. T.; Floyd, M.; Ford, J. M.; Galvin, M.; Gerlach, J. L.; Grotzfeld,
R. M.; Herrgard, S.; Insko, D. E.; Insko, M. A.; Lai, A. G.; Lelias,
J. M.; Mehta, S. A.; Milanov, Z. V.; Velasco, A. M.; Wodicka, L. M.;
Patel, H. K.; Zarrinkar, P. P.; Lockhart, D. J. A small molecule—
kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol.
2005, 23, 329-336.

(10) Fedorov, O.; Marsden, B.; Pogacic, V.; Rellos, P.; Muller, S.; Bullock,
A. N.; Schwaller, J.; Sundstrom, M.; Knapp, S. A systematic interaction
map of validated kinase inhibitors with Ser/Thr kinases. Proc. Natl.
Acad. Sci. U.S.A. 2007, 104, 20523-20528.

(11) Karaman, M. W.; Herrgard, S.; Treiber, D. K.; Gallant, P.; Atteridge,
C. E.; Campbell, B. T.; Chan, K. W.; Ciceri, P.; Davis, M. 1.; Edeen,
P. T.; Faraoni, R.; Floyd, M.; Hunt, J. P.; Lockhart, D. J.; Milanov,
Z. V.; Morrison, M. J.; Pallares, G.; Patel, H. K.; Pritchard, S.;
Wodicka, L. M.; Zarrinkar, P. P. A quantitative analysis of kinase
inhibitor selectivity. Nat. Biotechnol. 2008, 26, 127-132.

(12) Bachmann, M.; Moroy, T. The serine/threonine kinase Pim-1. Int.
J. Biochem. Cell Biol. 2005, 37, 726-730.

(13) Pogacic, V.; Bullock, A. N.; Fedorov, O.; Filippakopoulos, P.; Gasser,
C.; Biondi, A.; Meyer-Monard, S.; Knapp, S.; Schwaller, J. Structural
analysis identifies imidazo[ 1,2-b]pyridazines as PIM kinase inhibitors
with in vitro antileukemic activity. Cancer Res. 2007, 67, 6916—-6924.

(14) Stavenger, R. A.; Witherington, J.; Rawlings, D. A.; Holt, D. A.; Chan,
G. Preparation of N-Pyrrolopyridinyl Carboxamides as Chk1 Kinase
Inhibitors for Treating Various Forms of Cancer and Hyperproliferative
Disorders. Patent Application W02003028724, 2003.

(15) Bullock, A. N.; Debreczeni, J. E.; Fedorov, O. Y.; Nelson, A.; Marsden,
B. D.; Knapp, S. Structural basis of inhibitor specificity of the human
protooncogene proviral insertion site in moloney murine leukemia virus
(PIM-1) kinase. J. Med. Chem. 2005, 48, 7604-7614.

(16) Ohta, S.; Takeuchi, M.; Deguchi, M.; Tsuji, T.; Gahara, Y.; Nagata,
K. A novel transcriptional factor with Ser/Thr kinase activity involved
in the transforming growth factor (TGF)-beta signalling pathway.
Biochem. J. 2000, 350 (Part 2), 395-404.

(17) Ligos, J. M.; de Lera, T. L.; Hinderlich, S.; Guinea, B.; Sanchez, L.;
Roca, R.; Valencia, A.; Bernad, A. Functional interaction between
the Ser/Thr kinase PKL12 and N-acetylglucosamine kinase, a

Journal of Medicinal Chemistry, 2008, Vol. 51, No. 24 7913

prominent enzyme implicated in the salvage pathway for GIcNAc
recycling. J. Biol. Chem. 2002, 277, 6333-6343.

(18) Eswaran, J.; Bernad, A.; Ligos, J. M.; Guinea, B.; Debreczeni, J. E.;
Sobott, F.; Parker, S. A.; Najmanovich, R.; Turk, B. E.; Knapp, S.
Structure of the human protein kinase MPSKI1 reveals an atypical
activation loop architecture. Structure 2008, 16, 115-124.

(19) Podolin, P. L.; Callahan, J. F.; Bolognese, B. J.; Li, Y. H.; Carlson,
K.; Davis, T. G.; Mellor, G. W.; Evans, C.; Roshak, A. K. Attenuation
of murine collagen-induced arthritis by a novel, potent, selective small
molecule inhibitor of IkappaB kinase 2, TPCA-1 (2-[(aminocarbony-
I)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), occurs via re-
duction of proinflammatory cytokines and antigen-induced T cell
proliferation. J. Pharmacol. Exp. Ther. 2005, 312, 373-381.

(20) Tudhope, S. J.; Catley, M. C.; Fenwick, P. S.; Russell, R. E.; Rumsey,
W. L.; Newton, R.; Barnes, P. J.; Donnelly, L. E. The role of IkappaB
kinase 2, but not activation of NF-kappaB, in the release of CXCR3
ligands from IFN-gamma-stimulated human bronchial epithelial cells.
J. Immunol. 2007, 179, 6237-6245.

(21) Christopher, J. A.; Avitabile, B. G.; Bamborough, P.; Champigny,
A. C.; Cutler, G. J.; Dyos, S. L.; Grace, K. G.; Kerns, J. K.; Kitson,
J. D.; Mellor, G. W.; Morey, J. V.; Morse, M. A.; O’Malley, C. F.;
Patel, C. B.; Probst, N.; Rumsey, W.; Smith, C. A.; Wilson, M. J.
The discovery of 2-amino-3,5-diarylbenzamide inhibitors of IKK-alpha
and IKK-beta kinases. Bioorg. Med. Chem. Lett. 2007, 17, 3972-3977.

(22) Angell, R. M.; Atkinson, F. L.; Brown, M. J.; Chuang, T. T.;
Christopher, J. A.; Cichy-Knight, M.; Dunn, A. K.; Hightower, K. E.;
Malkakorpi, S.; Musgrave, J. R.; Neu, M.; Rowland, P.; Shea, R. L;
Smith, J. L.; Somers, D. O.; Thomas, S. A.; Thompson, G.; Wang, R.
N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)amides as potent,
selective, inhibitors of JNK2 and JNK3. Bioorg. Med. Chem. Lett.
2007, 17, 1296-1301.

(23) Sun, L.; Tran, N.; Tang, F.; App, H.; Hirth, P.; McMahon, G.; Tang,
C. Synthesis and biological evaluations of 3-substituted indolin-2-
ones: a novel class of tyrosine kinase inhibitors that exhibit selectivity
toward particular receptor tyrosine kinases. J. Med. Chem. 1998, 41,
2588-2603.

(24) Hauf, S.; Cole, R. W.; LaTerra, S.; Zimmer, C.; Schnapp, G.; Walter,
R.; Heckel, A.; van Meel, J.; Rieder, C. L.; Peters, J. M. The small
molecule Hesperadin reveals a role for Aurora B in correcting
kinetochore-microtubule attachment and in maintaining the spindle
assembly checkpoint. J. Cell Biol. 2003, 161, 281-294.

(25) Harrington, E. A.; Bebbington, D.; Moore, J.; Rasmussen, R. K.; Ajose-
Adeogun, A. O.; Nakayama, T.; Graham, J. A.; Demur, C.; Hercend,
T.; Diu-Hercend, A.; Su, M.; Golec, J. M.; Miller, K. M. VX-680, a
potent and selective small-molecule inhibitor of the Aurora kinases,
suppresses tumor growth in vivo. Nat. Med. 2004, 10, 262-267.

(26) Vertex Pharmaceuticals Press Release. http://investors.vrtx.com/re-
leasedetail.cfm?ReleaseID=276543. November 20, 2007.

(27) Bamborough, P.; Angell, R. M.; Bhamra, I.; Brown, D.; Bull, J.;
Christopher, J. A.; Cooper, A. W.; Fazal, L. H.; Giordano, I.; Hind,
L.; Patel, V. K.; Ranshaw, L. E.; Sims, M. J.; Skone, P. A.; Smith,
K. J.; Vickerstaff, E.; Washington, M. N-4-Pyrimidinyl-1H-indazol-
4-amine inhibitors of Lck: indazoles as phenol isosteres with improved
pharmacokinetics. Bioorg. Med. Chem. Lett. 2007, 17, 4363-4368.

(28) Angell, R.; Aston, N. M.; Bamborough, P.; Buckton, J. B.; Cockerill,
S.; deBoeck, S. J.; Edwards, C. D.; Holmes, D. S.; Jones, K. L.; Laine,
D. I.; Patel, S.; Smee, P. A.; Smith, K. J.; Somers, D. O.; Walker,
A. L. Biphenyl amide p38 kinase inhibitors 3: improvement of cellular
and in vivo activity. Bioorg. Med. Chem. Lett. 2008, 18, 4428-4432.

(29) Angell, R. M.; Angell, T. D.; Bamborough, P.; Bamford, M. J.; Chung,
C. W.; Cockerill, S. G.; Flack, S. S.; Jones, K. L.; Laine, D. L;
Longstaff, T.; Ludbrook, S.; Pearson, R.; Smith, K. J.; Smee, P. A.;
Somers, D. O.; Walker, A. L. Biphenyl amide p38 kinase inhibitors
4: DFG-in and DFG-out binding modes. Bioorg. Med. Chem. Lett.
2008, 18, 4433-4437.

(30) Cywin, C. L.; Zhao, B. P.; McNeil, D. W.; Hrapchak, M.; Prokopowicz,
A. S.; Goldberg, D. R.; Morwick, T. M.; Gao, A.; Jakes, S.; Kashem,
M.; Magolda, R. L.; Soll, R. M.; Player, M. R.; Bobko, M. A.; Rinker,
J.; DesJarlais, R. L.; Winters, M. P. Discovery and SAR of novel
naphthyridines as potent inhibitors of spleen tyrosine kinase (SYK).
Bioorg. Med. Chem. Lett. 2003, 13, 1415-1418.

(31) Witherington, J.; Bordas, V.; Gaiba, A.; Garton, N. S.; Naylor, A.;
Rawlings, A. D.; Slingsby, B. P.; Smith, D. G.; Takle, A. K.; Ward, R. W.
6-Aryl-pyrazolo[3,4-b]pyridines: potent inhibitors of glycogen synthase
kinase-3 (GSK-3). Bioorg. Med. Chem. Lett. 2003, 13, 3055-3057.

(32) Sawyer, J. S.; Anderson, B. D.; Beight, D. W.; Campbell, R. M.; Jones,
M. L.; Herron, D. K.; Lampe, J. W.; McCowan, J. R.; McMillen,
W. T.; Mort, N.; Parsons, S.; Smith, E. C.; Vieth, M.; Weir, L. C.;
Yan, L.; Zhang, F.; Yingling, J. M. Synthesis and activity of new
aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming
growth factor-beta type I receptor kinase domain. J. Med. Chem. 2003,
46, 3953-3956.



7914 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 24

(33) Sakuma, M.; Hatsushika, K.; Koyama, K.; Katoh, R.; Ando, T.;
Watanabe, Y.; Wako, M.; Kanzaki, M.; Takano, S.; Sugiyama, H.;
Hamada, Y.; Ogawa, H.; Okumura, K.; Nakao, A. TGF-beta type I
receptor kinase inhibitor down-regulates rheumatoid synoviocytes and
prevents the arthritis induced by type II collagen antibody. Int.
Immunol. 2007, 19, 117-126.

(34) Bandyopadhyay, A.; Agyin, J. K.; Wang, L.; Tang, Y.; Lei, X.; Story,
B. M.; Cornell, J. E.; Pollock, B. H.; Mundy, G. R.; Sun, L. Z.
Inhibition of pulmonary and skeletal metastasis by a transforming
growth factor-beta type I receptor kinase inhibitor. Cancer Res. 2006,
66, 6714-6721.

(35) Kawai, A.; Kawai, M.; Murata, Y.; Takada, J.; Sakakibara, M.
Preparation of Pyridylpyrroles as Interleukin and Tumor Necrosis
Factor Antagonists. Patent Application W09802430, 1998.

(36) Willett, P.; Barnard, J. M.; Downs, G. M. Chemical Similarity
Searching. J. Chem. Inf. Comput. Sci. 1998, 38, 983-996.

(37) Kauvar, L. M.; Higgins, D. L.; Villar, H. O.; Sportsman, J. R.;
Engqvist-Goldstein, A.; Bukar, R.; Bauer, K. E.; Dilley, H.; Rocke,
D. M. Predicting ligand binding to proteins by affinity fingerprinting.
Chem. Biol. 1995, 2, 107-118.

(38) Fliri, A. F.; Loging, W. T.; Thadeio, P. F.; Volkmann, R. A. Biological
spectra analysis: linking biological activity profiles to molecular
structure. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 261-266.

(39) Davies, S. P.; Reddy, H.; Caivano, M.; Cohen, P. Specificity and
mechanism of action of some commonly used protein kinase inhibitors.
Biochem. J. 2000, 351, 95-105.

(40) Bain, J.; McLauchlan, H.; Elliott, M.; Cohen, P. The specificities of
protein kinase inhibitors: an update. Biochem. J. 2003, 371, 199-204.

(41) Frye, S. V. Structure—activity relationship homology (SARAH): a
conceptual framework for drug discovery in the genomic era. Chem.
Biol. 1999, 6, R3—R7.

(42) Vieth, M.; Higgs, R. E.; Robertson, D. H.; Shapiro, M.; Gragg,
E. A.; Hemmerle, H. Kinomics—structural biology and chemoge-
nomics of kinase inhibitors and targets. Biochim. Biophys. Acta 2004,
1697, 243-257.

(43) ter Haar, E.; Walters, W. P.; Pazhanisamy, S.; Taslimi, P.; Pierce,
A. C.; Bemis, G. W.; Salituro, F. G.; Harbeson, S. L. Kinase
chemogenomics: targeting the human kinome for target validation and
drug discovery. Mini-Rev. Med. Chem. 2004, 4, 235-253.

(44) Katajisto, P.; Vallenius, T.; Vaahtomeri, K.; Ekman, N.; Udd, L.;
Tiainen, M.; Makela, T. P. The LKB1 tumor suppressor kinase in
human disease. Biochim. Biophys. Acta 2007, 1775, 63-75.

(45) Conner, S. D.; Schmid, S. L. Identification of an adaptor-associated
kinase, AAKI, as a regulator of clathrin-mediated endocytosis. J. Cell
Biol. 2002, 156, 921-929.

(46) Inohara, N.; del Peso, L.; Koseki, T.; Chen, S.; Nunez, G. RICK, a
novel protein kinase containing a caspase recruitment domain, interacts
with CLARP and regulates CD95-mediated apoptosis. J. Biol. Chem.
1998, 273, 12296-12300.

(47) McCarthy, J. V.; Ni, J.; Dixit, V. M. RIP2 is a novel NF-kappaB-
activating and cell death-inducing kinase. J. Biol. Chem. 1998, 273,
16968-16975.

(48) Thome, M.; Hofmann, K.; Burns, K.; Martinon, F.; Bodmer, J. L.;
Mattmann, C.; Tschopp, J. Identification of CARDIAK, a RIP-like
kinase that associates with caspase-1. Curr. Biol. 1998, 8, 885-888.

Bamborough et al.

(49) Chin, A. J.; Dempsey, P. W.; Cheng, G. Rip2: a key molecule that
regulates both innate and acquired immunity. Curr. Med. Chem. 2005,
4, 35-42.

(50) Argast, G. M.; Fausto, N.; Campbell, J. S. Inhibition of RIP2/RIck/
CARDIAK activity by pyridinyl imidazole inhibitors of p38 MAPK.
Mol. Cell. Biochem. 2005, 268, 129-140.

(51) Godl, K.; Wissing, J.; Kurtenbach, A.; Habenberger, P.; Blencke, S.;
Gutbrod, H.; Salassidis, K.; Stein-Gerlach, M.; Missio, A.; Cotten,
M.; Daub, H. An efficient proteomics method to identify the cellular
targets of protein kinase inhibitors. Proc. Natl. Acad. Sci. U.S.A. 2003,
100, 15434-15439.

(52) Eyers, P. A.; Craxton, M.; Morrice, N.; Cohen, P.; Goedert, M.
Conversion of SB 203580-insensitive MAP kinase family members
to drug-sensitive forms by a single amino-acid substitution. Chem.
Biol. 1998, 5, 321-328.

(53) Wood, E. R.; Truesdale, A. T.; McDonald, O. B.; Yuan, D.; Hassell,
A.; Dickerson, S. H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K.;
Alligood, K. J.; Rusnak, D. W.; Gilmer, T. M.; Shewchuk, L. A unique
structure for epidermal growth factor receptor bound to GW572016
(lapatinib): relationships among protein conformation, inhibitor off-
rate, and receptor activity in tumor cells. Cancer Res. 2004, 64, 6652—
6659.

(54) Schindler, T.; Bornmann, W.; Pellicena, P.; Miller, W. T.; Clarkson,
B.; Kuriyan, J. Structural mechanism for STI-571 inhibition of Abelson
tyrosine kinase. Science 2000, 289, 1938-1942.

(55) Levis, M.; Small, D. FLT3 tyrosine kinase inhibitors. Int. J. Hematol.
2005, 82, 100-107.

(56) Bold, G.; Floersheimer, A.; Furet, P.; Guagnano, V.; Masuya, K.;
Vaupel, A.; Schoepfer, J. Prepatation of Thiazole and Pyrazole
Derivatives as Flt-3 Kinase Inhibitors. Patent Application WO2005047273,
2005.

(57) Altmann, E.; Missbach, M.; Green, J.; Susa, M.; Wagenknecht, H. A.;
Widler, L. 7-Pyrrolidinyl- and 7-piperidinyl-5-aryl-pyrrolo[2,3-
d]pyrimidines—potent inhibitors of the tyrosine kinase c-Src. Bioorg.
Med. Chem. Lett. 2001, 11, 853-856.

(58) Liu, Y.; Gray, N. S. Rational design of inhibitors that bind to inactive
kinase conformations. Nat. Chem. Biol. 2006, 2, 358-364.

(59) Goldstein, D. M.; Gray, N. S.; Zarrinkar, P. P. High-throughput kinase
profiling as a platform for drug discovery. Nat. Rev. Drug Discovery
2008, 7, 391-397.

(60) AurScope Kinase Database. Aureus Pharma. http:/www.aureus-pharma.
com.

(61) Daylight Chemical Systems Inc. Daylight Theory Manual. http:/
www.daylight.com/dayhtml/doc/theory/theory.finger.html.

(62) Salk Institute, California and Sugen Inc. Kinase.com Web site. http://
kinase.com/human/kinome/phylogeny.html.

(63) Devereux, J.; Haeberli, P.; Smithies, O. A comprehensive set of
sequence analysis programs for the VAX. Nucleic Acids Res. 1984,
12, 387-395.

(64) Chevenet, F.; Brun, C.; Banuls, A. L.; Jacq, B.; Christen, R. TreeDyn:
towards dynamic graphics and annotations for analyses of trees. BMC
Bioinf. 2006, 7, 439.

JM8011036





